###
上海电力大学学报:2023,39(6):578-584
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
局部遮阴下基于改进AVOA的光伏多峰MPPT控制
(上海电力大学 电气工程学院)
Photovoltaic MPPT Control Based on Improved AVOA in Local Shade
(School of Electrical Engineering, Shanghai University of Electric Power, Shanghai 200090, China)
摘要
图/表
参考文献
本刊相似文献
All Journals 相似文献
All Journals 引证文献
本文已被:浏览 325次   下载 279
投稿时间:2023-05-09    
中文摘要: 光伏阵列受部分遮阴影响,其功率-电压特性曲线呈多峰状,导致传统最大功率点跟踪(MPPT)算法失效,因此提出了一种改进的非洲秃鹫优化算法(AVOA)运用于光伏的MPPT控制。首先,引入Tent混沌映射使种群位置更具多样性,避免过早收敛。然后,优化算法在探索和开发阶段的更新策略,减少计算力的浪费,提高寻优速率。最后,在MATLAB 2022b/Simulink环境下,应用所提算法对不同辐照情况的3组工况进行仿真。实验结果表明,在多峰MPPT控制中,该算法具有寻优效率高、收敛速度快等特点,能有效地提升复杂遮阴环境下光伏能源的利用率。
Abstract:Under the influence of partial shading, the power and voltage characteristic curve of PV array presents a multi-peak shape, which leads to the failure of traditional MPPT algorithm.Thus an improved African vultures optimization algorithm (AVOA)is proposed for MPPT photovoltaic control.Firstly, Tent chaotic mapping is introduced to make the population position more diverse and avoid premature convergence.Then, the update strategy of the algorithm is optimized in the exploration and development stage to reduce the waste of computing power and improve the search rate.Finally, in the MATLAB2022b/Simulink environment, the proposed algorithm is used to simulate three groups of conditions under different irradiation conditions.The results show that the algorithm has the characteristics of high optimization efficiency and fast convergence rate in the multi-peak MPPT control, which can effectively improve the utilization rate of photovoltaic energy in the complex shading environment.
文章编号:20236010     中图分类号:TM914    文献标志码:
基金项目:
引用文本:
陈涛.局部遮阴下基于改进AVOA的光伏多峰MPPT控制[J].上海电力大学学报,2023,39(6):578-584.
CHEN Tao.Photovoltaic MPPT Control Based on Improved AVOA in Local Shade[J].Journal of Shanghai University of Electric Power,2023,39(6):578-584.