本文已被:浏览 353次 下载 232次
投稿时间:2023-12-29
投稿时间:2023-12-29
中文摘要: 考虑到系统运行经济性的影响,对基于需求侧响应(DR)的风力发电与先进绝热压缩空气储能(AA-CAES)系统协调优化问题进行了研究。首先,基于分时电价构建了用户多时段需求侧响应模型,并根据AA-CAES系统的压缩、膨胀功率建模。其次,以系统的固定成本、设备维护成本、购电成本、售电成本以及调峰成本共同构成系统总成本,采用动态规划法对AA-CAES系统的压缩、膨胀功率进行优化,求得系统总成本最小的风力发电与AA-CAES系统最优容量配置。最后,通过仿真验证所提优化方法的可行性。
中文关键词: 先进绝热压缩空气储能 分时电价 动态规划法 容量优化配置 需求侧响应
Abstract:Considering the impact of system operation economics,the problem of coordinated optimization of wind power generated and advanced adiabatic compressed air energy storage(AA-CAES) systems based on demand response is analyzed. Firstly,the time-of-use power price model of user’s multi-time period is constructed based on the demand response;the compression and expansion power is modeled for AA-CAES. Secondly,the fixed cost,equipment maintenance cost,power purchase cost and sale cost,and peaking cost together constitute the total cost of the system, and the compression/expansion power of AA-CAES is optimized by dynamic programming method to find the optimal wind allocation capacity of wind power generated and AA-CAES systems with the minimum total cost. Finally,the feasibility of the proposed optimization method is verified by simulation.
keywords: advanced adiabatic compressed air energy storage time-of-use power price dynamic programming method capacity optimized allocation demand response
文章编号:20243005 中图分类号:TM734 文献标志码:
基金项目:国家自然科学基金(51977030)。
作者 | 单位 | |
李金钊 | 上海电力大学 | 1005718384@qq.com |
李江 | 上海电力大学 | |
李佳奕 | 国网上海市电力公司市北供电公司 |
引用文本:
李金钊,李江,李佳奕.基于电量电价弹性矩阵的风力发电与AA-CAES系统容量优化[J].上海电力大学学报,2024,40(3):227-234,264.
LI Jinzhao,LI Jiang,LI Jiayi.Capacity Optimization of Wind Power Generated and AA-CAES Systems Based on Electricity Price Elasticity Matrix[J].Journal of Shanghai University of Electric Power,2024,40(3):227-234,264.
李金钊,李江,李佳奕.基于电量电价弹性矩阵的风力发电与AA-CAES系统容量优化[J].上海电力大学学报,2024,40(3):227-234,264.
LI Jinzhao,LI Jiang,LI Jiayi.Capacity Optimization of Wind Power Generated and AA-CAES Systems Based on Electricity Price Elasticity Matrix[J].Journal of Shanghai University of Electric Power,2024,40(3):227-234,264.