###
上海电力大学学报:2024,40(4):293-299,314
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
基于改进条件生成对抗网络的需求响应潜力预测
(1.上海电力大学;2.上海市智能电网需求响应技术重点实验室;3.国网上海市电力公司)
Demand Response Potential Prediction Based on Improved Conditional Generative Adversarial Networks
(1.Shanghai University of Electric Power, Shanghai 200090, China;2.Shanghai Key Laboratory of Smart Grid Demand Response Technology, Shanghai 200063, China;3.State Grid Shanghai Electric Power Company, Shanghai 200120, China)
摘要
图/表
参考文献
本刊相似文献
All Journals 相似文献
All Journals 引证文献
本文已被:浏览 681次   下载 500
投稿时间:2024-02-01    
中文摘要: 为了解决现行各类基线负荷预测方法对时序性的依赖及多影响因素分类分析评估不准确等问题,提出了一种基于改进条件生成对抗网络(CGAN)和图卷积神经网络(GCN)的需求响应潜力预测方法。首先,引入融合CGAN和Wasserstein生成对抗网络(WGAN)的Wasserstein条件生成对抗网络(WCGAN),并利用历史数据训练生成器和判别器,估计基线负荷;然后,充分考虑基线与响应负荷的不确定性,提出了一种基于WCGAN和GCN的需求响应负荷预测方法;最后,采用实际负荷数据对所提方法的有效性进行了分析。
Abstract:In order to solve the problems such as the dependence of the existing various baseline load estimation methods on temporality and the inaccurate assessment of the classification analysis of multiple influencing factors,a user-side flexibility resource response potential assessment method based on the improved conditional generative adversarial networks(CGAN)and graph convolutional neural networks(GCN)is proposed. Firstly,a fusion of wasserstein generative adversarial networks (WGAN) and CGAN is introduced to create. Wasserstein conditional generative adversarial networks(WCGAN),and historical data are used to train the generator and discriminator to estimate the baseline load;then,with full consideration of the uncertainty of the baseline and response loads,we propose an approach based on the WCGAN and GCN;finally, the effectiveness of the proposed method is analysed by using actual load data.
文章编号:20244001     中图分类号:TM9    文献标志码:
基金项目:国家自然科学基金(51977127);上海市教育发展基金会和上海市教育委员会“曙光计划”(20SG52)。
引用文本:
房子衿,周波,林顺富,等.基于改进条件生成对抗网络的需求响应潜力预测[J].上海电力大学学报,2024,40(4):293-299,314.
FANG Zijin,ZHOU Bo,LIN Shunfu,et al.Demand Response Potential Prediction Based on Improved Conditional Generative Adversarial Networks[J].Journal of Shanghai University of Electric Power,2024,40(4):293-299,314.