本文已被:浏览 1128次 下载 665次
投稿时间:2024-03-12
投稿时间:2024-03-12
中文摘要: 近年来,城市电力峰谷差不断增大,仅仅依靠发电侧资源很难维持电力系统的实时平衡。电动汽车-充电桩负荷作为一种典型的柔性负荷,可以利用网络信息技术、大数据分析手段和市场机制,将区域内可调度的电动汽车负荷资源聚集参与需求响应。从负荷聚合商角度出发,提出了一种基于随机选择电动汽车影响因素,按照概率密度计算电动汽车集群负荷情况的建模方法,并制定了优化调节策略,聚合电动汽车集群参与需求响应市场,削减了区域内电力峰值,降低了参与响应用户的充电成本。未来,在电力市场化背景下,利用需求侧大量微小负荷资源聚集响应将成为确保资源有效分配的重要工具。
中文关键词: 需求响应 负荷聚合商 电动汽车-充电桩负荷
Abstract:In recent years,the peak-valley difference of urban power is increasing,and it is difficult to maintain the real-time balance of power system only by the power generation side resources. As a typical flexible load,electric vehicle-charging pile load can use network information technology,means of big data analysis and market mechanism to gather the dispatchable load resources of electric vehicles in the region to participate in demand response. From the perspective of load aggregators,this paper proposes a modeling method based on random selection of EVs influencing factors and calculation of EVs cluster load according to probability density,and formulates optimal adjustment strategies to aggregate EVs to participate in the demand response market,so as to reduce the power peak within the region and reduce the charging cost of participating users. In the future, under the background of electricity marketization,the use of a large number of micro-load resources on the demand side to aggregate response will become an important tool to ensure the effective allocation of resources,which has practical significance.
文章编号:20244003 中图分类号:TM73 文献标志码:
基金项目:
引用文本:
陈亚临,杨涌文,赵一涵.面向需求响应的电动汽车-充电桩负荷聚合调度优化策略[J].上海电力大学学报,2024,40(4):309-314.
CHEN Yalin,YANG Yongwen,ZHAO Yihan.Demand Response-Oriented Electric Vehicle-Charging Pile Load Aggregation Scheduling Optimization Strategy[J].Journal of Shanghai University of Electric Power,2024,40(4):309-314.
陈亚临,杨涌文,赵一涵.面向需求响应的电动汽车-充电桩负荷聚合调度优化策略[J].上海电力大学学报,2024,40(4):309-314.
CHEN Yalin,YANG Yongwen,ZHAO Yihan.Demand Response-Oriented Electric Vehicle-Charging Pile Load Aggregation Scheduling Optimization Strategy[J].Journal of Shanghai University of Electric Power,2024,40(4):309-314.