本文已被:浏览 485次 下载 414次
投稿时间:2024-03-04
投稿时间:2024-03-04
中文摘要: 深远海场景下的风电场受热带气旋等极端气候影响将产生大规模风电功率爬坡事件,严重威胁电网安全稳定运行。对此,提出了一种将深度强化学习和分布鲁棒优化结合起来平抑风电功率爬坡事件的储能容量优化配置方法。首先,基于改进旋转门算法识别风电功率爬坡事件,采用近端策略优化算法对风电功率爬坡事件进行平抑。其次,基于深度强化学习训练的模型,采用分布鲁棒优化对储能进行容量配置优化。最后,对不同场景下的储能容量配置结果进行比较分析。仿真结果验证了所提优化配置方法的有效性。
Abstract:Wind farms in deep sea scenarios are affected by extreme climates such as tropical cyclones,which results in large-scale wind power ramp events,seriously affecting the safe and stable operation of the electrical power network. An optimal configuration method of energy storage capacity combining deep reinforcement learning with distributionally robust optimization to smooth wind power ramp events is proposed. Firstly,based on the improved swinging door algorithm,wind power ramp events is identified,and the proximal policy optimal algorithm is used to smooth wind power ramp events. Secondly, the model trained based on deep reinforcement learning uses distributionally robust optimization to optimize the capacity allocation of energy storage. Finally,the configuration results of energy storage capacity in different scenarios are compared and analyzed. The simulation results verify the effectiveness of the proposed optimization configuration method.
keywords: wind power ramping tropical cyclones configuration of energy storage proximal policy optimal algorithm distributionally robust optimization
文章编号:20245009 中图分类号:TM715 文献标志码:
基金项目:
作者 | 单位 | |
时帅 | 上海电力大学 电气工程学院 | shishuai@shiep.edu.cn |
蒋一 | 上海电力大学 电气工程学院 | |
黄冬梅 | 上海电力大学 电气工程学院 | |
李媛媛 | 上海电力大学 电气工程学院 | |
虞颖 | 国网上海市电力公司浦东供电公司, 上海 200120 | |
宋巍 | 上海海洋大学 信息学院 |
引用文本:
时帅,蒋一,黄冬梅,等.计及风电爬坡的储能分布鲁棒优化配置方法[J].上海电力大学学报,2024,40(5):459-467.
SHI Shuai,JIANG Yi,HUANG Dongmei,et al.Distributionally Robust Optimization of Energy Storage Considering the Wind Power Ramp Events[J].Journal of Shanghai University of Electric Power,2024,40(5):459-467.
时帅,蒋一,黄冬梅,等.计及风电爬坡的储能分布鲁棒优化配置方法[J].上海电力大学学报,2024,40(5):459-467.
SHI Shuai,JIANG Yi,HUANG Dongmei,et al.Distributionally Robust Optimization of Energy Storage Considering the Wind Power Ramp Events[J].Journal of Shanghai University of Electric Power,2024,40(5):459-467.