###
上海电力大学学报:2024,40(6):587-594
本文二维码信息
码上扫一扫!
基于相似波动聚类与SA-LightGBM的日前电价预测
(上海电力大学 电气工程学院)
Day-Ahead Electricity Price Prediction Based on Similar Fluctuation Clustering and SA-LightGBM
(School of Electrical Engineering, Shanghai University of Electric Power, Shanghai 200090, China)
摘要
图/表
参考文献
本刊相似文献
All Journals 相似文献
All Journals 引证文献
本文已被:浏览 0次   下载 0
投稿时间:2024-03-29    
中文摘要: 日前电价的准确预测对于提高市场主体的交易收益至关重要。针对高比例新能源参与现货市场交易导致日前电价预测难度增加的问题,提出了一种基于相似波动聚类与自注意力(SA)机制的轻型量梯度提升机(SA-LightGBM)日前电价预测方法。首先,基于电价数据特征,采用改进模糊C均值(FCM)聚类对波动场景进行分类,得到3种波动场景下的数据集。其次,在不同波动场景下,采用Kendall相关系数对影响电价的特征进行相关性分析,选定输入特征。然后,基于波动场景与输入特征建立SA-LightGBM 预测模型。最后,利用国内某省电力交易平台提供的历史数据,验证了所提模型的有效性和可靠性。
Abstract:The precise forecasting of electricity prices for the following day holds significant importance in enhancing the revenue generated by market participants. Addressing the challenge posed by the increased presence of new energy sources in spot market transactions,a novel approach for predicting day-ahead electricity prices using light gradient boosting machine (LightGBM)is introduced. The method incorporates similar wave clustering and self-attention (SA)techniques. Initially,fuzzy C-means(FCM)clustering is applied to categorize fluctuation scenarios based on electricity price data characteristics,resulting in distinct datasets for each scenario. Subsequently,Kendall correlation coefficient is utilized to analyze the correlation of features influencing electricity prices across different fluctuation scenarios, facilitating the selection of input features. The SA-LightGBM prediction model is then constructed,tailored to the specific fluctuation scenario and input characteristics. Finally,the proposed algorithm’s effectiveness and dependability are assessed using historical data sourced from a provincial power trading platform in China.
文章编号:20246013     中图分类号:F426.61    文献标志码:
基金项目:
引用文本:
郭鑫炜,赵耀.基于相似波动聚类与SA-LightGBM的日前电价预测[J].上海电力大学学报,2024,40(6):587-594.
GUO Xinwei,ZHAO Yao.Day-Ahead Electricity Price Prediction Based on Similar Fluctuation Clustering and SA-LightGBM[J].Journal of Shanghai University of Electric Power,2024,40(6):587-594.