###
Journal of ShangHai University of Electric Power :2014,30(3):243-247
View/Add Comment     Archive    Advanced search     HTML
←Previous   |   Next
基于改进PSO-BP神经网络的变压器故障诊断
(1.上海电力学院自动化工程学院;2.国网浙江宁波市鄞州区供电公司)
Transformer Fault Diagnosis Based on the Improved PSO-BP Neural Network
(1.School of Automation Engineering, Shanghai University of Electric Power, Shanghai 200090, China;2.Zhejiang Ningbo Yinzhou Power Supply Company, State Grid Corporation of China, Ningbo 315100, China)
Abstract
Image-text
References
Similar literature
本文已被:浏览 1410次   下载 530
Received:May 24, 2014    
中文摘要: 引入动态变异操作来优化粒子群算法,同时将改进的粒子群优化算法和误差反向传播的算法相结合,构成混合算法,用于训练人工神经网络,并将该混合算法应用于变压器的故障诊断.仿真结果表明,该算法具有较快的收敛速度和较高的计算精度;诊断结果表明,该算法有利于提高变压器故障诊断的正确率.
Abstract:A dynamic mutation operation is introduced to the particle swarm optimization(PSO), and the improved PSO and back propagation(BP) algorithm is combined to form hybrid algorithm for training artificial neural networks. Applying the hybrid algorithm to the transformer fault diagnosis, the results show that this hybrid algorithm has a faster convergence speed and higher accuracy. And the diagnostic results show that this hybrid algorithm can improve the accuracy of the transformer fault diagnosis.
文章编号:20140311     中图分类号:    文献标志码:
基金项目:上海市"科技创新行动计划"高新技术领域重点科研项目(14511101200)
Reference text: