###
Journal of ShangHai University of Electric Power :2022,38(1):98-104
View/Add Comment     Archive    Advanced search     HTML
←Previous   |   Next→
一种新的相关系数矩阵稀疏估计的对偶方法
(1.上海电力大学 数理学院;2.上海理工大学 理学院)
A New Dual Method for the Sparse Estimation of Correlation Matrices
(1.School of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, China;2.College of Science, University of Shanghai for Science and Technology, Shanghai 200439, China)
Abstract
Image-text
References
Similar literature
本文已被:浏览 788次   下载 500
Received:November 06, 2021    
中文摘要: 提出了一种新的基于邻近梯度的对偶方法。该方法求解Frobenius范数意义下的相关系数矩阵的稀疏逼近问题。首先, 推导出一种新的有界约束的对偶问题; 然后, 提出一个相应的具有全局收敛性的邻近梯度算法; 最后, 通过在随机数据集上的数值结果验证了该算法的可行性。
Abstract:In this paper, we propose a novel dual method based on proximal gradient method for the sparse approximation of correlation matrices in the sense of Frobenius norm.A new dual formulation with bound constraints is derived.To solve the dual, a global convergent proximal gradient algorithm is developed.Some preliminary numerical results on synthetic data sets are given to confirm the feasibility of our algorithm.
文章编号:20221016     中图分类号:O221    文献标志码:
基金项目:国家自然科学基金青年项目(11601318)
Reference text:


###
DOI:
Journal of ShangHai University of Electric Power :2022,(1):-
View/Comment     Archive    Advanced search     HTML
←Previous   |   Next→
Abstract
Image-text
References
Similar literature
本文已被:浏览次   下载
    
中文摘要:
中文关键词:
Abstract:
keywords:
文章编号:20221016     中图分类号:    文献标志码:
基金项目:
Reference text: