###
上海电力大学学报:2022,38(2):203-207
←前一篇   |   后一篇→
本文二维码信息
码上扫一扫!
基于深度特征合成和关联规则的数据库异常访问检测
(上海电力大学 计算机科学与技术学院)
Database Anomaly Detection Based on Deep Feature Synthesis and Apriori Algorithm
(School of Computer Science and Technology, Shanghai University of Electric Power)
摘要
图/表
参考文献
本刊相似文献
All Journals 相似文献
All Journals 引证文献
本文已被:浏览 920次   下载 606
投稿时间:2021-04-13    
中文摘要: 企业或组织内部的重要数据都存储在数据库中,因此数据库经常成为恶意入侵者的攻击目标。传统防火墙对于来自外部的入侵者有着很好的抵御作用,但无法检测来自系统内部人员的异常访问。针对数据库异常访问检测中存在的不足和缺陷,提出了一种基于深度特征合成(DFS)和关联规则(Apriori)算法的异常检测方法。通过对比BP神经网络、随机森林和C4.5决策树等3种其他检测算法表明,新提出的方法能够更加高效地提取用户特征,从而使检测的精准率和效率有显著提升。
Abstract:The important data in the enterprise or organization are stored in the database,so the database often becomes the target of malicious intruders.The traditional firewall can resist the intruders from outside,but it can’t detect the abnormal access from inside.Therefore,this paper proposes an anomaly detection method based on deep feature synthesis and Apriori algorithm,aiming at the shortcomings and defects of database anomaly access detection.Experimental comparison of three other detection algorithms shows that:the new method can extract user features more efficiently,so that the accuracy and efficiency of detection are significantly improved.
文章编号:202202016     中图分类号:TP301    文献标志码:
基金项目:
引用文本:
李麒鑫,田秀霞.基于深度特征合成和关联规则的数据库异常访问检测[J].上海电力大学学报,2022,38(2):203-207.
LI Qixin,TIAN Xiuxia.Database Anomaly Detection Based on Deep Feature Synthesis and Apriori Algorithm[J].Journal of Shanghai University of Electric Power,2022,38(2):203-207.