###
上海电力大学学报:2022,38(1):94-97
本文二维码信息
码上扫一扫!
团数为5的零因子图对应的有限交换局部环
(上海电力大学 数理学院)
On Finite Local Rings With Clique Number Five
(School of Mathematics and Physics, Shanghai University of Electric Power, Shanghai 200090, China)
摘要
图/表
参考文献
本刊相似文献
All Journals 相似文献
All Journals 引证文献
本文已被:浏览 701次   下载 357
投稿时间:2021-05-12    
中文摘要: 零因子图主要是利用图论的语言和工具来研究并解决代数中的一些难题。对于任意的有限交换局部环, 其代数结构一直是研究难点。通过对零因子图团数的分类, 讨论了当团数为5时, 对应的有限交换局部环R的代数性质, 刻画了环R的极大理想的幂零指数。特别是, 当极大理想的幂零指数为5时, 对极大理想的代数结构及极小生成元集进行了具体刻画。
Abstract:In recent years, zero-divisor graph mainly uses the language and tools of graph theory to study and solve some research problems in algebra.For any finite local ring R, the algebraic structure of ring R is always a difficult problem.We study the algebraic properties of rings R whose zero-divisor graph Γ(R) has clique number five.Furthermore, we give the complete characterizations of the maximal ideal of the finite commutative local rings with ω(Γ(R))=5 and N()=5.
文章编号:20221015     中图分类号:O153.3    文献标志码:
基金项目:国家自然科学基金(11801356)
引用文本:
刘琼,吴明光.团数为5的零因子图对应的有限交换局部环[J].上海电力大学学报,2022,38(1):94-97.
LIU Qiong,WU Mingguang.On Finite Local Rings With Clique Number Five[J].Journal of Shanghai University of Electric Power,2022,38(1):94-97.