本文已被:浏览 701次 下载 357次
投稿时间:2021-05-12
投稿时间:2021-05-12
中文摘要: 零因子图主要是利用图论的语言和工具来研究并解决代数中的一些难题。对于任意的有限交换局部环, 其代数结构一直是研究难点。通过对零因子图团数的分类, 讨论了当团数为5时, 对应的有限交换局部环R的代数性质, 刻画了环R的极大理想 的幂零指数。特别是, 当极大理想 的幂零指数为5时, 对极大理想 的代数结构及极小生成元集进行了具体刻画。
Abstract:In recent years, zero-divisor graph mainly uses the language and tools of graph theory to study and solve some research problems in algebra.For any finite local ring R, the algebraic structure of ring R is always a difficult problem.We study the algebraic properties of rings R whose zero-divisor graph Γ(R) has clique number five.Furthermore, we give the complete characterizations of the maximal ideal of the finite commutative local rings with ω(Γ(R))=5 and N( )=5.
文章编号:20221015 中图分类号:O153.3 文献标志码:
基金项目:国家自然科学基金(11801356)
作者 | 单位 | |
刘琼 | 上海电力大学 数理学院 | sky200547@126.com |
吴明光 | 上海电力大学 数理学院 |
引用文本:
刘琼,吴明光.团数为5的零因子图对应的有限交换局部环[J].上海电力大学学报,2022,38(1):94-97.
LIU Qiong,WU Mingguang.On Finite Local Rings With Clique Number Five[J].Journal of Shanghai University of Electric Power,2022,38(1):94-97.
刘琼,吴明光.团数为5的零因子图对应的有限交换局部环[J].上海电力大学学报,2022,38(1):94-97.
LIU Qiong,WU Mingguang.On Finite Local Rings With Clique Number Five[J].Journal of Shanghai University of Electric Power,2022,38(1):94-97.