本文已被:浏览 786次 下载 499次
投稿时间:2021-11-06
投稿时间:2021-11-06
中文摘要: 提出了一种新的基于邻近梯度的对偶方法。该方法求解Frobenius范数意义下的相关系数矩阵的稀疏逼近问题。首先, 推导出一种新的有界约束的对偶问题; 然后, 提出一个相应的具有全局收敛性的邻近梯度算法; 最后, 通过在随机数据集上的数值结果验证了该算法的可行性。
Abstract:In this paper, we propose a novel dual method based on proximal gradient method for the sparse approximation of correlation matrices in the sense of Frobenius norm.A new dual formulation with bound constraints is derived.To solve the dual, a global convergent proximal gradient algorithm is developed.Some preliminary numerical results on synthetic data sets are given to confirm the feasibility of our algorithm.
keywords: correlation matrices sparse approximation dual proximal gradient algorithm global convergence
文章编号:20221016 中图分类号:O221 文献标志码:
基金项目:国家自然科学基金青年项目(11601318)
作者 | 单位 | |
薛文娟 | 上海电力大学 数理学院 | xuewenjuan@shiep.edu.cn |
刘潇 | 上海理工大学 理学院 |
引用文本:
薛文娟,刘潇.一种新的相关系数矩阵稀疏估计的对偶方法[J].上海电力大学学报,2022,38(1):98-104.
XUE Wenjuan,LIU Xiao.A New Dual Method for the Sparse Estimation of Correlation Matrices[J].Journal of Shanghai University of Electric Power,2022,38(1):98-104.
薛文娟,刘潇.一种新的相关系数矩阵稀疏估计的对偶方法[J].上海电力大学学报,2022,38(1):98-104.
XUE Wenjuan,LIU Xiao.A New Dual Method for the Sparse Estimation of Correlation Matrices[J].Journal of Shanghai University of Electric Power,2022,38(1):98-104.