###
上海电力大学学报:2023,39(1):25-32
本文二维码信息
码上扫一扫!
改进拉格朗日松弛算法的机组组合研究
(太原理工大学 电气与动力工程学院)
Research on Unit Commitment Based on Improved Lagrangian Relaxation Algorithm
(College of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China)
摘要
图/表
参考文献
本刊相似文献
All Journals 相似文献
All Journals 引证文献
本文已被:浏览 672次   下载 312
投稿时间:2022-07-14    
中文摘要: 为提高计算效率,并针对传统拉格朗日松弛算法(LR)在优化过程中存在对偶间隙不能收敛的问题,提出了一种改进的拉格朗日松弛算法(LR-CMSCA)以优化大规模机组组合问题。首先通过正弦余弦算法(SCA)优化拉格朗日乘子的更新路径,以缓解振荡现象;然后在SCA中引入柯西变异算子对当前粒子进行干扰,尽可能避免陷入局部最优,并引入自适应权重更新策略,使粒子更快逼近最优解;最后利用不同机组规模的电力系统进行仿真计算,并将计算结果与其他算法进行比较。结果表明,该方法在计算结果上具有优势,且有实际应用价值。
Abstract:In order to improve the computational efficiency,and to solve the problem that the dual gap cannot converge in the traditional Lagrangian relaxation algorithm in the optimization process,an improved Lagrangian relaxation algorithm is proposed to optimize the large-scale unit commitment problem.The method firstly optimizes the update path of Lagrange multipliers through the sine cosine algorithm to alleviate the oscillation,and secondly introduces the Cauchy mutation operator into the sine cosine algorithm to interfere with the current particle,so as to avoid falling into local optimum as much as possible and introduce adaptive weight update strategy to make particles approach the optimal solution faster.Finally,the power system of the units is used for simulation calculation,and the calculation results are compared with other algorithms.The results show that this method has advantages in calculation results and has practical application value.
文章编号:20230105     中图分类号:TM73;TM76    文献标志码:
基金项目:国家自然科学基金(62176176,21606159);山西省重点研发计划项目(201803D121039)。
引用文本:
晋美珠,韩晓霞,武晋德,等.改进拉格朗日松弛算法的机组组合研究[J].上海电力大学学报,2023,39(1):25-32.
JIN Meizhu,HAN Xiaoxia,WU Jinde,et al.Research on Unit Commitment Based on Improved Lagrangian Relaxation Algorithm[J].Journal of Shanghai University of Electric Power,2023,39(1):25-32.