###
上海电力大学学报:2023,39(1):33-39
本文二维码信息
码上扫一扫!
基于改进灰狼优化算法自抗扰控制器在火电燃料控制系统中的应用
(上海电力大学 自动化工程学院)
Application of Active Disturbance Rejection Controller Based on Improved Grey Wolf Optimization Algorithm in Thermal Power Fuel Control System
(School of Automation Engineering, Shanghai University of Electric Power, Shanghai 200090, China)
摘要
图/表
参考文献
本刊相似文献
All Journals 相似文献
All Journals 引证文献
本文已被:浏览 615次   下载 293
投稿时间:2022-09-27    
中文摘要: 针对火电厂燃料控制这一非线性、滞后性、强干扰的被控对象,设计基于改进灰狼优化算法的自抗扰控制器。对燃料控制系统不同工况进行了阶跃仿真实验、扰动测试、鲁棒性测试以及变工况实验。实验结果表明,相较于传统比例-积分(PI)控制器和专家经验整定的自抗扰控制器,改进灰狼优化算法的自抗扰控制器可以实现燃料量的快速、稳定调节,在抗扰动及变工况过程中有较好的控制效果,具有较强的鲁棒性。
Abstract:Aiming at the controlled object of thermal power plant fuel control,which is nonlinear,large lag and strong disturbance,an active disturbance rejection controller based on the improved grey wolf optimization algorithm is designed.Through the step simulation experiment,disturbance experiment,robustness experiment and variable working condition experiment of the fuel control system is conducted under different working conditions.The experimental results show that,compared with the traditional PI controller and the active disturbance rejection controller based on expert experience,the active disturbance rejection controller based on the improved grey wolf optimization algorithm can realize the fast and stable adjustment of the fuel.It has better control effect in the process of disturbance and variable working condition,and has strong robustness.
文章编号:20230106     中图分类号:TM621    文献标志码:
基金项目:
引用文本:
蔡志鹏,许建强,王旻洁,等.基于改进灰狼优化算法自抗扰控制器在火电燃料控制系统中的应用[J].上海电力大学学报,2023,39(1):33-39.
CAI Zhipeng,XU Jianqiang,WANG Minjie,et al.Application of Active Disturbance Rejection Controller Based on Improved Grey Wolf Optimization Algorithm in Thermal Power Fuel Control System[J].Journal of Shanghai University of Electric Power,2023,39(1):33-39.